在异界学习黑魔法的日子 第115章

作者:苏维埃毛熊 标签: 系统 升级流 西幻 穿越重生

艾尔经过短暂的思考已经重新回到了信心满满的状态:“因为喷火兽有四只脚,现在有24只脚是喷火兽的,所以有六只喷火兽!”

“笨蛋!喷火兽只抬起了两只脚,所以是24除以2十二只啦!”

这句“笨蛋”可不是黎曼喊的,他一直小心谨慎地保持着自己的友好态度,生怕让这个本来就已经有概率被超纲进度逼到厌学的孩子再次受到打击。

这句“笨蛋”出自旁边围观的一个女孩,呃,事实上旁边不止围观了她一个,不知道什么时候,黎曼和艾尔面前的这堆小火堆旁边,已经聚集起了一群小孩。

艾尔和那个女孩显然原本的相处模式就是如此,因为他并没有露出任何恼羞成怒或者不开心的神情,而是恍然大悟地拍了下手掌:“对哦!谢谢你米西!真不愧是你啊米西!”

被叫做米西的女孩矜持地扬了扬脑袋:“哼。”

黎曼笑了一下:“不错,我们现在已经知道了喷火兽的数量是12,那么水晶鸟的数量是?”

“23!”几个小孩齐声喊到。

黎曼点了点头:“很好,很好,我们现在重新回到这两个方程上来。”

“x+y=35,那么2x+2y就等于70,这个式子是不是就意味着喷火兽抬起脚后地面上所有的脚的数目?”

“这时候,我们知道总的脚的数量是2x+4y,喷火兽抬起脚后的地面上的脚的数量是2x+2y,我们用2x+4y减去2x+2y,是不是得到的就是喷火兽抬起的爪子数量?”

“也就是2y,它的意义是不是就是,喷火兽的数量y乘以它们每个人抬起两只爪子?”

“2y等于94-35x2等于24,所以y,也就是喷火兽的数量为24除以2等于12。”

“我们再回去算x是不是就只需要用35减去y了?”

被叫做米西的女孩小大人般地摸了摸了下巴:“挺有意思的,虽然原本的解法也很简单,但是你给出了一个意义,嗯,倒不是说我需要什么意义,只有艾尔才会不停地追问学这个有什么意义,学那个有什么意义……”

艾尔:“嘿!这对我很重要好吗?如果我不知道这代表了什么,我就是没法说服自己这么做下去!我就是忍不住去想着到底意味着什么!”

“哦……可怜的艾尔。”米西小女孩怜悯地看了眼他。

黎曼没去打断他们俩的对话,也没去打断在旁边若有所思的几个孩子的思考进程,而是四处环顾了一番,找到了他想找的人。

“弗莱迪先生,我能私下和你谈谈吗?”

“当然可以,黎曼先生,你想谈什么?”大个子弗莱迪一脸迷茫地跟着他走到了火光的边缘处。

“是这样的,我刚刚和小艾尔聊了聊,我发现你们是按照魔法等级在……在学习数学是吗?”

大个子弗莱迪脸上的迷茫更加明显了,整个人都仿佛一个大写的“不然呢?”。

黎曼继续说:“如果我没猜错的话,你们是不是一环魔法的核心是哪些,你们就对应地研究哪道题目?然后再是二环……三环……?”

弗莱迪缓缓地点了点头。

黎曼:“我知道我这样可能有些多管闲事了,但是我觉得你们这样做并不是个好主意,当然,从实用角度说,这样确实是最高效的办法,需要哪个魔法,就对应地去研究哪个魔法……但是这可能会导致这些孩子基础不好,那么一旦碰到后面越来越难的题目,你要他们在一盘散沙的基础上再去建房子吗?我想这应该是很难办到的吧……”

“不,不不不,黎曼先生,请随意说出您的想法,你这么年轻就成了三环法师,你愿意指导我们,我求之不得哩!”

大个子弗莱迪终于反应过来了(一部分),抬起了他真挚的双眼,看向黎曼。

黎曼:“那我就直说了,我觉得这些孩子,应该暂时忘记魔法实用性,单纯地去学习数学,而且要系统性地学习,比如艾尔这样的孩子,他还没法很好地理解那些抽象概念,是因为他本来就还该在用物对应数的状态,而像米西这样的孩子,她聪明,能洞悉本质,对逻辑符号有天然的亲近感,更不应该浪费她的天赋,如果好好培养她,她以后解三四环的核心也会和解一二环的核心一样轻易……”

“……如果你不介意的话,我可以教他们。”

弗莱迪忍不住犹豫了一下,严格来说,这属于天上掉馅饼的事,他不该犹豫,但就是因为这事太“天上掉馅饼”,他刚消解的警惕心又忍不住浮了上来。

但是……他怎么想,都想不出对方能有什么目的€€€€把他们全都收到自己门下当学徒?怎么看也都是他们占便宜啊!

而且就算有什么危险等在前方,他也很难放弃一个提高全体族人的实力的机会。

而且以对方的实力,如果真想对他们做什么,但又不直接拿他们当实验材料,弗莱迪怎么也只能想到一个可能€€€€那就是他们大多数人的实力还不足以当对方的实验材料,对方还得费心把他们培养起来,在这种情况下的话,为了摆脱现状而努力靠自己提升实力和努力按照对方给出的更优路线提升实力似乎并没有什么区别。

于是€€€€

“那就……多谢黎曼先生了!”

黎曼思考了一下:“等等。”

刚刚还在想东想西疑神疑鬼的弗莱迪瞬间紧张了起来:“您,您反悔了吗?”

黎曼:“哦那倒不是,我只是觉得不光是孩子们,你们也要重新上课。”

第146章 第二堂课

这句话似乎某种程度上印证了大个子弗莱迪的担心€€€€黎曼真的是觉得他们实力还不足以给他当实验材料,甚至不愿意单单从更好培养的小孩子培养起,而是决定将他们这些成年人也一块拔苗助长了吗?

但是,但是!

弗莱迪胸中无端地生出了一口豪气!

怎能让孩子们独自承受危险,他们这些老胳膊老腿应该为他们挡在危险之前才是。

如果黎曼知道他在想什么,估计只会憋出一句:“……你想太多了。”

黎曼和弗莱迪回到火堆群旁,那几个小孩还聚在一起叽叽喳喳,不知道在讨论些什么,于是黎曼转头对弗莱迪说:“那就先把……嗯,十五岁以上的人聚集起来吧,我先给你们上课,艾尔他们还在讨论他们的想法。”

……

黎曼看着面前坐了一排又一排的人,放了一个【召唤€€光】,他又看向他们手中的一张纸一支笔:“呃,一张纸大概不够记笔记的,你们多拿几章。”

等其他人准备完毕,黎曼也捏出了一道石板,准备开始上课。

“你们这个年纪……那就从实数开始讲起吧。”

“我知道你们对数的认知和魔法紧密关联,但是我还是决定从正常的逻辑来介绍数。”

“最简单,最容易被人类意识到,并且抽象概括出来的数,是正整数,我们再给它加一个0上去,就是自然数,自然数对加法和乘法是封闭的,这句话的意思是,1+1等于的2依旧是自然数,1乘2等于的2依旧是自然数,任意两个自然数相加,相乘,结果依旧是自然数,那么它对什么是不封闭的呢?”

“减法。”

“如果我面前摆有五只野果,我吃掉了三只,把这个过程抽象为一个算式的话就是5-3=2,这种减法是比较直观的,生活中常用的,最容易被抽象出来的,而且答案依旧在自然数里。”

“但是如果算式是3-5,我们就没法从自然数中找到一个数去当它的答案,但这个式子依旧是有意义的,比如我现在有三枚银币,但是我买了一本书,要五枚银币,那么此时我倒欠书店老板2枚银币。”

“由此我们将数的范围扩充到整数,也就是我们加入了负数的概念。”

“现在,整数对加法,乘法,减法都已经是封闭的了,但是它依旧不够好用。”

“我们会碰到这样的情况,现在有八个人出去采集野果,采到了十六个野果,那么我们自然地就会将16平分给8个人,并且得到算式16/8=2,也就是除法,整数对除法是不封闭的,比如2/3,得到的就不是整数,于是我们把数的范围扩充到有理数。”

“我知道你们更习惯把这个叫做分数,但是我更喜欢叫有理数,所以记下这个词然后以后你们就知道它代表什么了。”

“在这里我们对有理数进行一个定义,我们把有理数定义为p/q,其中pq是互质的整数,q为正整数,p为整数。”

“有理数的范围足够我们做大多数运算了,但是它并不囊括了所有数。”

“比如经典的根号2,我们来证明一下,根号2不为有理数,也就是说,根号二没法表示成分数。”

“我们采用一个反证法。”

“假设根号2可以表示为形式为p/q的有理数,其中pq是互质整数,那么我们可以得到一个等式p?=2q?。”

“我再次强调一遍,我们假设了p,q都是整数,那么这种情况下,p必不能为奇数,因为奇数的平方里不可能有2这个因数,对吗?”

“所以我们推出,p为偶数,偶数可以表示为2k,其中k为整数。”

“于是我们又得到了一个等式,2k?=q?,同理可得,q为偶数。”

“也就是说,从根号2是有理数这个前提,我们可以推出这样一个结果,p和q拥有一个共同的因数2,而这违背了最初的假设pq互质,由此可得这个前提条件是错误的。”

“根据类似的思路我们还可以证明根号3,根号12是无理数。”

“然后在这里,我要第一次引入无穷的概念,我现在画一条线段,这条线段的起点是0,终点是1,也就是它是一段长度为1的有限长的线段。”

“那么请思考这样一个问题,如果我要从0走到1,那么我得先走到0和1的中点1/2,如果我要从0走到1/2,那么我就需要先走到0和1/2的中点1/4,而这个过程是可以无限继续下去的,你们看到问题所在了吗?”

“第二个例子,依旧是这条线段,我把它竖起来,然后我再在它的旁边画一条倾斜一点的线段,有点像直角三角形的高和斜边长,对吧。”

“这两条线段的长度明显是不想等的,但是我们可以将上面的点一一对应起来,横着连线,对,假设,线段是由一个一个可数的点构成的,那么我们就会得到一个荒谬的结论,也就是这两条线段是相等的。”

“但是我们知道它们俩是不相等的,所以,我想你们应该已经得出了结论,哪怕是一条有限长的线段上,上面也布满了无穷个数,对吗?”

“很好,这就是你们暂时需要知道的关于实数的事。”

“我们接下来来讲集合。”

……

米西是半途从艾尔他们中溜出来来到黎曼先生的“课堂”后的。

黎曼先生把召唤光放到了石板的上方,这个光球足够亮,亮到她可以看见她妈妈纸上的笔记。

“妈妈,给我看看。”

“哦!米西!你什么时候过来的?”

“刚刚。”

米西的妈妈抽出她垫在下面的几张纸递给米西,自己则接着听课记笔记。

米西快速地扫了眼那几张纸,然后抬起头看向白光下正在侃侃而谈的黎曼先生。

“……集合另一个需要注意的特性是,元素的重复是无意义的。”

“我们举个例子来理解,大家应该还记得集合定义是具有某种特定性质的对象的汇总,那么我现在在这里喊一句€€€€谁要跟我一起去打猎?报名的人是否就是一个集合?”

“这种情况下,假设我不小心将弗莱迪先生的名字记下了两次,比如我现在纸上共有18个名字,其中有两个弗莱迪,这并不意味着会出现两个弗莱迪来跟我打猎,不是吗?真正和我一起去打猎的依旧只有17个人,只有一个弗莱迪,这就是重复的无意义。”

米西觉得黎曼先生是个神奇的人,他总喜欢举各种各样的例子,她其实觉得这样有点浪费时间啦,但其他人好像觉得这样更好理解,唉,那她就只能迁就下其他那些不够聪明的人了。

“……集合另一个需要注意的地方是,呃,稍等一下。”

米西看着黎曼先生从不知道哪里摸出了一张纸,他好看的眉微微皱了起来,然后转头对大家说:“抱歉,今天都课就先到这里,虽然没什么需要深入理解的内容,但希望大家能花些时间记住这些基本概念,因为以后我们会经常用到,哪里有忘记的可以互相交换一下笔记,进行一个查漏补缺,我有些事情要去做,明天见。”

米西忍不住发出了一声懊恼的“噢€€€€”,她才刚来呢!怎么还没开始就要结束了!

不过她没懊恼多久,因为她妈妈扯了扯她的衣角:“米西,帮我看看证明根号2这一段……”

“好的,妈妈。”

……

让黎曼中途停下他的讲课的理由自然是深渊的消息。

他离开庞德主教和圣子一群人之前,给了他们一个临时传送小阵€€€€小阵的意思是真的非常小,只够传张纸条过来的。

那是一张超级小的地图,上面共打了六个x,意思就是这六个地方有深渊异变。

黎曼挑了挑眉,难怪庞德主教当时态度那么不配合,现在还是来找他了,一次性出现了六处异变,教廷估计也有些手忙脚乱。

黎曼检查了一番自己的装备,立刻传送离开。

“藤蔓缠绕。”